Remodeling of cell-seeded soft tissues due to mechanical stimulation

J.-H. Yi¹, B. Zhou¹, M. Stoffel¹, D. Weichert¹, B. Rath²

¹Institute of General Mechanics, RWTH Aachen University

²Department for Orthopedics and Trauma Surgery, University Hospital Aachen

4th CanCNSM, July 23-26, 2013 in Montréal
Aim of the research

- Defective articular cartilage

- Replacement material: condensed collagen gel

- Cell-seeded condensed collagen gel
Remodeling of cell-seeded soft tissues

Contents

Experiments
 Cell-seeded condensed collagen gel
 Bioreactor
 Compression test

Theory
 Assumption
 Constitutive modeling

Identification

Conclusions
I. Experiments
Cell-seeded condensed collagen gel

Figure: Condensing chamber and cell-seeded condensed collagen gel
Remodeling of cell-seeded soft tissues

Experiments

Bioreactor

Bioreactor

Part 4

Part 3

Part 2

Part 1
Remodeling of cell-seeded soft tissues

Experiments

Bioreactor

Bioreactor operation

Stimulation

After stimulation

periodic loading

scaffold

stimulus for weeks

nutrient medium

collagen type II fiber ⊥ loading direction

ca.2 mm

ca.10 mm

Cylindrical specimen with collagen type II

axis of rotational symmetry

I AM RWTH AACHEN UNIVERSITY
Histological comparison

(a) Initial state (b) Not stimulated (c) Stimulated

Figure: Histology cross section
Microscopic phenomenon

Mechn. stimulation

Before stimulation

Scaffold cell

After 4 weeks stimulation

Col-II

After stimulation

Ca. 100 \(\mu\text{m}\)
Remodeling of cell-seeded soft tissues

Experiments

Compression test

Compression test

(a) MTS machine

(b) Force-time curve

⇒ Elasticity & Viscoelasticity
Remodeling of cell-seeded soft tissues

Experiments

Compression test

Compression test

\[\rightarrow \text{Change of elasticity} \quad (\text{Change of viscoelasticity}) \]
II. Theory
Assumptions

- The cell-seeded collagen gel is assumed to be incompressible hyperelastic.
- The initial state is assumed to be isotropic.
- Due to the synthesized collagen type II the material becomes transversely isotropic and the stiffness increases.
- The system is closed to all transfers of matter.
Constitutive modeling I

- **Free-energy function**
 \[
 \psi = \psi(C, N_0) = \psi(l_1, l_2, l_4, l_5) \quad (l_3 = 1)
 \]
 \[
 = \frac{\lambda}{2} l_1^2 + G_p(l_1^2 - 2l_2) + \alpha l_4 l_1 + 2(G_t - G_p)l_5 + \frac{\beta}{2} l_4^2
 \]

- **Stress** \(\mathbf{S} = \)
 \[
 \lambda l_1 \mathbf{I} + 2G_p \mathbf{C} + \alpha (l_1 \mathbf{N}_0 + l_4 \mathbf{I}) + 2(G_t - G_p)(\mathbf{N}_0 \mathbf{C} + \mathbf{C} \mathbf{N}_0) + \beta l_4 \mathbf{N}_0
 \]

- **Elasticity tensor**
 \[
 \mathbf{A}^e = \lambda \mathbf{I} \otimes \mathbf{I} + 2G_p \mathbf{I}
 \]
 \[
 + \alpha (\mathbf{I} \otimes \mathbf{N}_0 + \mathbf{N}_0 \otimes \mathbf{I}) + 2(G_t - G_p)(\mathbf{N}_0 \mathbf{I} + \mathbf{I} \mathbf{N}_0) + \beta \mathbf{N}_0 \otimes \mathbf{N}_0
 \]

 Transversely isotropic stiffness: \(E_p, E_t, \nu_{pt}, \nu_p, \) and \(G_t\)
Evolution of hyperelastic properties

- **Initial isotropic state:**
 \[E_t = E_p \overset{\text{def}}{=} E, \quad \nu_{pt} = \nu_p \overset{\text{def}}{=} \nu, \quad G_t = G_p \overset{\text{def}}{=} G, \]
 \[N_0 = 0, \quad l_4 = l_5 = 0. \]

- **Isotropy \rightarrow Transversely isotropy:**
 \[\dot{E}_p = k \sqrt{\Psi} (E_{p,\text{crit}} - E_p), \]
 \[\dot{E}_t = \dot{\nu}_p = \dot{\nu}_{pt} = \dot{G}_t = 0. \]
Remodeling of cell-seeded soft tissues

Theory

Constitutive modeling

Flowchart of Young’s modulus evolution

\[E_p(t = 0) = E \]

\[\Delta E_p \]

\[E_p + \Delta E_p \]

\[E_p + \Delta E_p \geq E_{p,\text{crit}} \]

\[E_p + \Delta E_p < E_{p,\text{crit}} \]

\[E_p = E_p + \Delta E_p \]
III. Identification
Identification of Young’s modulus and remodeling parameters

<table>
<thead>
<tr>
<th>Time [week]</th>
<th>E_p [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0.8963</td>
</tr>
<tr>
<td>1 week</td>
<td>0.2145</td>
</tr>
<tr>
<td>2 week</td>
<td>0.5671</td>
</tr>
<tr>
<td>3 week</td>
<td>0.9861</td>
</tr>
<tr>
<td>4 week</td>
<td>0.9980</td>
</tr>
</tbody>
</table>

$\rightarrow k = 4.0$ and $n = 0.5$
Simulation of remodeling

Figure: Remodeling of Young’s modulus E_p on the right side cross section
Remodeling of cell-seeded soft tissues

Further cases of change of E_p

<table>
<thead>
<tr>
<th>Spec. ID</th>
<th>Spec. 2</th>
<th>Spec. 3</th>
<th>Spec. 4</th>
<th>Spec. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>0.500</td>
<td>0.800</td>
<td>0.896</td>
<td>1.047</td>
</tr>
<tr>
<td>1 week</td>
<td>Not available</td>
<td>Not available</td>
<td>0.215</td>
<td>0.206</td>
</tr>
<tr>
<td>2 weeks</td>
<td>Not available</td>
<td>Not available</td>
<td>0.567</td>
<td>0.233</td>
</tr>
<tr>
<td>3 weeks</td>
<td>Not available</td>
<td>Not available</td>
<td>0.987</td>
<td>0.168</td>
</tr>
<tr>
<td>4 weeks</td>
<td>0.510</td>
<td>1.200</td>
<td>0.998</td>
<td>0.213</td>
</tr>
<tr>
<td>change</td>
<td>increase</td>
<td>increase</td>
<td>increase</td>
<td>decrease</td>
</tr>
</tbody>
</table>

k and n are different according to specimens!
IV. Conclusions
Conclusions

▶ Bioreactor
 Remodeling phenomenon due to cell activity
 ⇒ Young’s modulus changes
 ⇒ Isotropy → Anisotropy

▶ Evolution equation
 Remodeling parameters k and n
Future perspectives

- **Consolidation**

 Cyclic loading in a bioreactor \Rightarrow Scaffold consolidation

- **Enzyme degradation**

 Predamaged cell \Rightarrow Degradation of scaffold

- **Switch point**

 Enzyme degradation \Rightarrow Synthesis

- **Optimal stimulation**

 Duration, frequency, compression depth or...
THANK YOU FOR YOUR ATTENTION!