Remodeling of soft tissues due to cell activity

J.-H. Yi1, M. Azarnoosh1, M. Stoffel1, D. Weichert1, B. Rath2

1Institute of General Mechanics, RWTH Aachen University
2Department for Orthopedics and Trauma Surgery, University Hospital Aachen

The 7th APCB, August 29-31, 2013 in Seoul, Korea
Aim of the research

- Defective articular cartilage
- Replacement material: condensed collagen gel
- Cell-seeded condensed collagen gel
Remodeling of soft tissues due to cell activity

Contents

Experiments
 Cell-seeded condensed collagen gel
 Bioreactor
 Compression test

Theories and validations
 IAM model
 The κ model

Conclusions
I. Experiments
Remodeling of soft tissues due to cell activity

- Experiments
- Cell-seeded condensed collagen gel

Cell-seeded condensed collagen gel

Figure: Condensing chamber and cell-seeded condensed collagen gel
Remodeling of soft tissues due to cell activity

- Experiments
- Bioreactor

Bioreactor
Remodeling of soft tissues due to cell activity

Experiments

Bioreactor operation

Bioreactor operation

- **Stimulation**
 - periodic loading
 - scaffold cell
 - nutrient medium
 - stimulus for weeks

- **After stimulation**
 - ca. 10 mm
 - ca. 2 mm
 - Cylindrical specimen with collagen type II
 - axis of rotational symmetry
 - collagen type II fiber ⊥ loading direction
Remodeling of soft tissues due to cell activity

Experiments

Bioreactor

Histological comparison

(a) Initial state (b) Not stimulated (c) Stimulated

Figure: Histology cross section
Remodeling of soft tissues due to cell activity

- Experiments
- Bioreactor

Microscopic phenomenon

before stimulation

after stimulation

mech. stimulation

scaffold cell

col-II

ca. 100 μm

after 4 weeks stimulation
Remodeling of soft tissues due to cell activity

- Experiments
 - Compression test

Compression test

(a) MTS machine

(b) Stress-strain curve
II. Theories and validations
Remodeling of soft tissues due to cell activity

- Theories and validations
- IAM model

A. IAM model
Assumptions

- The cell-seeded collagen gel is assumed to be incompressible hyperelastic.
- The initial state is assumed to be isotropic.
- Due to the synthesized collagen type II the material becomes transversely isotropic and the stiffness increases.
- The system is closed to all transfers of matter.
Constitutive modeling I

- **Free-energy function**
 \[
 \psi = \psi(C, N_0) = \psi(l_1, l_2, l_4, l_5) \quad (l_3 = 1) \\
 = \frac{\lambda}{2} l_1^2 + G_p(l_1^2 - 2l_2) + \alpha l_4 l_1 + 2(G_t - G_p)l_5 + \frac{\beta}{2} l_4^2,
 \]

- **Stress** \(S = \)
 \[
 \lambda l_1 I + 2G_p C + \alpha(l_1 N_0 + l_4 I) + 2(G_t - G_p)(N_0 C + C N_0) + \beta l_4 N_0
 \]

- **Elasticity tensor**
 \[
 A^e = \lambda I \otimes I + 2G_p I \\
 + \alpha(I \otimes N_0 + N_0 \otimes I) + 2(G_t - G_p)(N_0 I + I N_0) + \beta N_0 \otimes N_0
 \]

Transversely isotropic stiffness: \(E_p, E_t, \nu_{pt}, \nu_p, \) and \(G_t \)
Constitutive modeling II

Evolution of hyperelastic properties

- Initial isotropic state:
 \[E_t = E_p \overset{\text{def}}{=} E, \quad \nu_{pt} = \nu_p \overset{\text{def}}{=} \nu, \quad G_t = G_p \overset{\text{def}}{=} G, \]
 \[\mathbf{N}_0 = \mathbf{0}, \quad l_4 = l_5 = 0. \]

- Isotropy \(\rightarrow\) Transversely isotropy:
 \[\dot{E}_p = k \sqrt{\Psi} (E_{p,\text{crit}} - E_p), \]
 \[\dot{E}_t = \dot{\nu}_p = \dot{\nu}_{pt} = \dot{G}_t = 0. \]
Remodeling of soft tissues due to cell activity

Theories and validations

IAM model

Flowchart of Young’s modulus evolution

\[E_p(t = 0) = E \]

mechanical simulation, \(\Psi \)

\[\Delta E_p \]

\[E_p + \Delta E_p \]

\[E_p + \Delta E_p \geq E_{p,\text{crit}} \]

\[E_p + \Delta E_p < E_{p,\text{crit}} \]

\[E_p = E_p + \Delta E_p \]

\[E_p = E_{p,\text{crit}} \]
Identification of Young’s modulus and remodeling parameters

Compression test

<table>
<thead>
<tr>
<th>Time [week]</th>
<th>E_p [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0.8963</td>
</tr>
<tr>
<td>1 week</td>
<td>0.2145</td>
</tr>
<tr>
<td>2 week</td>
<td>0.5671</td>
</tr>
<tr>
<td>3 week</td>
<td>0.9861</td>
</tr>
<tr>
<td>4 week</td>
<td>0.9980</td>
</tr>
</tbody>
</table>

$\rightarrow k = 4.0$ and $n = 0.5$
Remodeling of soft tissues due to cell activity

- Theories and validations
- The κ model

The κ model
Assumptions

- The cell-seeded collagen gel is assumed to be a *incompressible neo-Hookean* material.
- The initial state is assumed to be *isotropic*.
- Due to the synthesized collagen type II the material becomes *transversely isotropic* and the *stiffness increases*.
- The system is *closed* to all transfers of matter.
Constitutive modeling

Free-energy function of the tissue:

\[\psi = \psi(C, N_0) = \psi(l_1, l_4) = \psi_g(l_1) + \psi_f(l_1, l_4), \]

- Free-energy function of condensed collagen gel:
 \[\psi_g(l_1) = \frac{c}{2} (l_1 - 3), \]

- Free-energy function of collagen type II fiber:
 \[\psi_f(l_1, l_4) = \psi_f(l_4^*) = \frac{k_1}{k_2} \left\{ \exp \left[k_2 (l_4^* - 1)^2 \right] - 1 \right\}, \]
 where \(l_4^* = \kappa l_1 + (1 - 3\kappa) l_4 \).

\[\kappa = \begin{cases}
1/3 & \text{isotropic} \\
0 & \text{transversely isotropic}
\end{cases} \]
Remodeling of soft tissues due to cell activity

Theories and validations

The κ model

Second Piola-Kirchhoff stress tensor

\[\mathbf{S} = \mathbf{S}_g + \mathbf{S}_f , \]

- Second Piola-Kirchhoff stress tensor of condensed collagen gel:
 \[\mathbf{S}_g = 2 \frac{\partial \psi_g}{\partial \mathbf{C}} = c \mathbf{I} , \]

- Second Piola-Kirchhoff stress tensor of collagen type II fiber:
 \[\mathbf{S}_f = 2 \frac{\partial \psi_f}{\partial \mathbf{C}} = 4k_1 \exp \left[k_2 (l_4^* - 1)^2 \right] (l_4^* - 1) \mathbf{M} \otimes \mathbf{M} . \]
Remodeling of soft tissues due to cell activity
Theories and validations
The \(\kappa \) model

Identification of parameters of \(\kappa \) model

<table>
<thead>
<tr>
<th>Parameters</th>
<th>(\kappa)</th>
<th>(k_1) [MPa]</th>
<th>(k_2) [–]</th>
<th>(c) [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>0.333</td>
<td>0</td>
<td>1</td>
<td>13.5</td>
</tr>
<tr>
<td>1 week</td>
<td>0.28</td>
<td>0.1</td>
<td>1</td>
<td>6.6</td>
</tr>
<tr>
<td>2 weeks</td>
<td>0.155</td>
<td>0.5</td>
<td>1</td>
<td>5.53</td>
</tr>
<tr>
<td>3 weeks</td>
<td>0.105</td>
<td>0.8</td>
<td>1</td>
<td>8.1</td>
</tr>
<tr>
<td>4 weeks</td>
<td>0.105</td>
<td>0.9</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>change</td>
<td>decrease</td>
<td>increase</td>
<td>constant</td>
<td>??</td>
</tr>
</tbody>
</table>
Remodeling of soft tissues due to cell activity

Theories and validations

The κ model

Flowchart of k_1
IV. Conclusions
Conclusions

- **Bioreactor**
 Remodeling phenomenon due to cell activity
 \[\Rightarrow \text{Young's modulus changes (change of } k_1) \]
 \[\Rightarrow \text{Isotropy } \rightarrow \text{Anisotropy (change of } \kappa) \]

- **Evolution equation**
 Remodeling parameters \(k \) and \(n \)
Future perspectives

- **Consolidation**

 Cyclic loading in a bioreactor \implies Scaffold consolidation

- **Enzyme degradation**

 Predamaged cell \implies Degradation of scaffold

- **Switch point**

 Enzyme degradation \implies Synthesis

- **Optimal stimulation**

 Duration, frequency, compression depth or...
THANK YOU FOR YOUR ATTENTION!