A biomechanical model for cartilage replacement material

J. Yi1, M. Stoffel1, D. Weichert1, K. Gavenis2, R. Müller-Rath2

1Institut für Allgemeine Mechanik, RWTH Aachen
2Klinik für Orthopädie und Unfallchirurgie, RWTH Aachen

IBBTM 2009 in München, July 10-11, 2009
Table of contents

Motivation and aim

Experiment
 Bioreactor
 Fotos of specimens

Theory and simulations
 Constitutive equations
 Finite element method
 Simulations

Summary and future work
Motivation and aim

- Replacement of human meniscus by cell-seeded collagen gel
- Experimental, theoretical and numerical investigation
- Remodeling of cell-seeded collagen gel due to mechanical stimulus
Periodic loading: frequency $= (3\text{sec})^{-1}$, amplitude $= 0.5\text{ mm}$
For comparison In bioreactor
Diffusion model

\[
\dot{\sigma} = \dot{\sigma}^e + \dot{\sigma}^{ve} + \dot{\sigma}^d
\]

\[
= C : \dot{\varepsilon} + \tilde{C}(\dot{\varepsilon}) : \dot{\varepsilon} - D(\varepsilon_v) \sigma
\]

where \(\sigma\): Cauchy stress tensor, \(\varepsilon\): strain tensor, \(\varepsilon_v\): volume strain

\(C\): elastic moduli tensor, \(\tilde{C}\): viscoelastic moduli tensor and

\(D\): diffusion parameter \(D(\varepsilon_v) = D_0 + D_1\varepsilon_v\)
Evolution of density and Young’s modulus

\[
\frac{d\rho}{dt} = B \left(\frac{U}{\rho} - k \right) \quad (2)
\]
\[
E = c\rho^\gamma \quad (3)
\]

where ρ: density, B and k: material parameters

U: strain energy density, c and γ: material parameters

\[
U = \frac{1}{2} \lambda \ln^2(J) + \frac{1}{2} \mu \left(I_1^C - 3 \right) - \mu \ln(J)
\]

\[1\]
Weinans et al. J. Biomechanics Vol. 25, No. 12, pp. 1425-1441, 1992
Finite element model

User-defined subroutine UMAT in Abaqus

(a) FE model

(b) Distribution of E

Boundary condition: $E_m = \frac{\int_0^h E(y)dy}{h}$
Evolution of density

(a) t = 0sec
(b) t = 6sec
(c) t = 12sec
(d) t = 24sec
(e) t = 30sec
Evolution of Young’s modulus

(a) t = 0sec
(b) t = 6sec
(c) t = 12sec
(d) t = 24sec
(e) t = 30sec

J. Yi, M. Stoffel, D. Weichert, K. Gavenis, R. Müller-Rath

A biomechanical model for cartilage replacement material
Summary

- A biomechanical model of cell-seeded collagen gel is suggested.
- The remodeling of density and Young’s modulus due to a mechanical loading is explained.

Outlook

- What would be the parameters?
- How do cells react to the mechanical load?
- How can a replacement material be optimized?
Thank you very much!